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Abstract. The collisionless Boltzmann equation is generalized herein using the Green function theory
proposed recently by A.K. Rajagopal et al. [Phys. Rev. Lett. 80, 3911 (1998)] to describe nonextensive
systems based on Tsallis formalism. Its invariance with the nonextensive index, q, and some conservative
laws useful in the description of sound propagation are verified. In this context, the Wigner distribution
has also been introduced. Furthermore, the formalism developed in the research is applied for fermionic
system, to obtain the dynamic dielectric response function.

PACS. 05.70.Ce Thermodynamic functions and equations of state – 05.30.-d Quantum statistical
mechanics – 05.20.-y Classical statistical mechanics – 05.30.Ch Quantum ensemble theory

1 Introduction

The usual statistical mechanics has recently been ex-
tended through the employment of the nonextensive
Tsallis entropy [1–3]

Sq =
1− Trρ̂q

q − 1
, (1)

where q and ρ̂ are respectively a real parameter and
the density matrix. This extension has been applied
in many physical situations, Lévy-type anomalous su-
perdiffusion [4], Euler turbulence [5], gravitating systems
[5,6], anomalous relaxation through electron-phonon in-
teraction [7], ferrofluid-like systems [8], nonlinear dissi-
pative dynamical systems [9], among others. It may not
be out of place to mention here some important formal
developments such as linear response theory [10], Green
functions [11,12], variational and perturbative methods
[13,14], and generalization of Laplace transform [15] used
in connection with nonextensive phenomena and Tsallis
statistics. In the above context, it is natural to study how
the usual Boltzmann equation, which plays an important
role in the analysis of transport phenomena [16,17], can be
incorporated in the Tsallis framework. In fact, the usual
Boltzmann equation accomplishing the Tsallis statistics
may develop new possibilities in the exploration of dynam-
ical aspects of systems with long-range interaction [1–3]
and fractal boundary conditions in metals [18,19].

The purpose of this work is to develop the collisionless-
like Boltzmann equation by incorporating the general
Green functions theory [11,12] based on Tsallis statistics.

a e-mail: eklenzi@cbpf.br

More precisely, here we generalize the technique and ap-
proach adopted by Kadanoff-Baym [16] for collisionless
Boltzmann equation, so the present derivation is an exten-
sion of their results by incorporating the Tsallis statistics.
Present development may have implications in the descrip-
tion of possible future experiments, evolving fermionic and
bosonic systems worked in references [11,12], and in high
frequency vibrations in a collisionless electronic plasma
[20,21]. In addition, this work can be used to give a basis
for the analysis performed in the recent works [7,22] based
on the nonextensive framework. Furthermore, we apply
the formalism developed in this research to fermionic sys-
tems in order to obtain some quantities of physical inter-
est such as change of density and dielectric function. We
also find the expressions for the average number and for
the internal energy in the limit of high temperature and
low temperature employing the normalized version of the
Tsallis statistics for q less than one.

2 Boltzmann transport-like equation

As it is well known, there is a class of disturbances not con-
veniently described by the usual equilibrium Green func-
tions [16]: the disturbance produced by an externally ap-
plied force field, F(r, t) = −∇U(r, t). Many interesting
physical phenomena appear as response of systems to ex-
ternal disturbances of this kind. For instance, in ordinary
gas, a slowly varying U(r, t) produces sound waves. Sim-
ilar features are also expected to appear in nonextensive
systems. Concepts based on Tsallis statistics should be
thus employed to investigate the above issues.
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The generalized canonical density matrix ρ̂, obtained
from the maximum entropy principle, taking into account
Tsallis entropy and the q-expectations averages 〈Ĥ〉q =
Trρ̂qĤ/Trρ̂q [3] and 〈N̂〉q = Trρ̂qN̂/Trρ̂q [3] , is given by

ρ̂ = expq

[
−β

Trρ̂q
(
Ĥ − µN̂ − 〈Ĥ − µN̂〉q

)]/
Zq

Zq = Tr
(

expq

[
−β

Trρ̂q
(
Ĥ − µN̂ − 〈Ĥ − µN̂〉q

)])
, (2)

where expq [x] = [1 + (1− q)x]1/(1−q) is the generalized
Tsallis exponential, and Zq is the partition function. Now,
accomplishing the q-expectation average of the operator
X̂(R, t) by using the interaction picture, we have that

〈X̂(R, t)〉U,q =

∑
i

ρ̂qi 〈i, t0|X̂U (R, t)|i, t0〉∑
i

ρ̂qi

= 〈XU(R, T )〉q , (3)

X̂U(R, t) = V(t)−1X̂(R, t)V(t) with V(t) =
T
(

exp
[
−i
∫ t
t0

dt′
∫

d3r′n̂(r′, t′)U(r′, t′)
])

(T is the
time ordering operator), following the approach employed
in [16]. Note that V(t) is chosen in order to incorporate
the external disturbance Ĥ ′(t) =

∫
d3r n̂(r, t)U(r, t),

where n̂(r, t) = Ψ†U (r, t)ΨU (r, t). Thus, the Green func-
tions developed in [12], within the normalized averages
[3], may be rewritten in a suitable form,

G̃(q)(1, 1′;U) =
1
i
〈T(Ψ†U (1′)ΨU (1))〉q (4)

and

G̃(q)(12, 1′2′;U) =(
1
i

)2

〈T(ΨU (1)ΨU(2)Ψ†U (2)Ψ†U(1))〉q . (5)

In terms of the above Green functions, we may describe
the response of a system, initially in thermodynamical
equilibrium, to an applied disturbance U(r, t).

Employing the above development, the average density
at point (R, T ) is given by

〈n̂(R, T )〉U,q = 〈Ψ†U (R, T )ΨU(R, T )〉q
= ±iG̃(q)

< (R, T,R, T ;U) , (6)

and the density current at the same point is

〈Ĵ(R, T )〉U,q ={
∇−∇′

2mi

[
±iG̃(q)

< (R, T,R′, T ;U)
]}

R=R′
. (7)

In these equations and in the following discussion, the
upper sign (+) if for the bosonic case and the lower one
is for fermions. The conservation laws for the number
of particles, the energy and the total momentum are
preserved here as well as in the usual case. In terms
of 〈n̂(R, T )〉U,q and 〈Ĵ(R, T )〉U,q, main results for the
derivation of sound propagation are

∂

∂T
〈n̂(R, T )〉U,q +∇ · 〈Ĵ(R, T )〉U,q = 0 , (8)

d
dT
〈Ĥ(T )〉U,q +

∫
dR [∇U(R, T )] · 〈Ĵ(R, T )〉U,q = 0 ,

(9)

d
dt
〈P̂(t)〉U,q +

∫
dR [∇U(R, t)] · 〈n̂(R, t)〉U,q = 0 . (10)

The above equations can be verified directly by using the
Heisenberg equation for Ψ† and Ψ as well as equations (6)
and (7).

In the context of Tsallis statistics, the Wigner distri-
bution fq(p,R, T ) (with r = r1 − r1′ , R = (r1 + r1′)/2,
t = t1 − t1′ and T = (t1 + t1′)/2) may be defined as

fq(p,R, T ) =
∫

dω
2π
G̃

(q)
< (p, ω,R, T ;U)

=
∫

d3 re−ip·r
〈
Ψ†U

(
R− r

2
, T
)

×ΨU
(
R +

r
2
, T
)〉

q
. (11)

Similar to the standard case, fq(p,R, T ) leads to the
generalized q-particle density

∫
d3p

(2π)3
fq(p,R, T ) = 〈Ψ†U (R, T )ΨU (R, T )〉q

= 〈n̂(R, T )〉q , (12)

and the generalized q-particle current

〈Ĵ(R, T )〉U,q =
∫

d3p

(2π)3

p
m
fq(p,R, T ) . (13)

The above definition of the distribution function
fq(p,R, T ) will enable us to see the relationship between
Green functions, transport equations and the generalized
collisionless Boltzmann equation.

The generalized collisionless Boltzmann equation may
be obtained by using the equation of motion(

i
∂

∂t1
+
∇2

1

2m
− U(1)

)
G̃(q)(1, 1′;U) =

δ(1− 1′)±
∫

d2V (1− 2)G̃(q)(12, 1′2+;U) (14)
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(d2 = d3r2dt2 , V (1 − 2) = v(r1 − r2)δ(t1 − t2))
and the Hartree approximation G̃(q)(12, 1′2′;U) =
G̃(q)(1, 1′;U)G̃(q)(2, 2′;U), physically motivated by
the propagation interpretation of G̃(q)(1, 1′;U) and
G̃(q)(12, 1′2′;U) as in [11,12,16]. Thus, we obtain from
equation (14) and the Hartree approximation, after some
simplifications, the equation(

i
∂

∂t1
+
∇2

1

2m
− Ueff(1)

)
G̃(q)(1, 1′;U) = δ(1− 1′) , (15)

where Ueff(R, T ) = U(R, T ) ± i
∫

dR′v(R − R′)
× G̃

(q)
< (R′, T ; R′, T ). By taking the difference of equa-

tion (15) in the variables 1 and 1′, we find[
i
(
∂

∂t1
+

∂

∂t1′

)
+ (∇1 +∇1′) ·

(
∇1 −∇1′

2m

)
− [Ueff(1)− Ueff(1′)]

]
G̃(q)(1, 1′;U) = 0. (16)

Considering t1′ = t+1 = T and expressing equation (16)
in terms of r = r1 − r1′ , R = (r1 + r1′)/2, and using
equation (11), we verify that(
∂

∂T
+
∇R · ∇r

im
− 1

i

[
Ueff(R +

r
2
, T )

−Ueff(R− r
2
, T )
])∫ d3p′

(2π)3
eip′·rfq(p′,R, T ) = 0. (17)

Now, supposing that Ueff(R, T ) varies slowly in R, the
generalized collisionless Boltzmann equation is given by[
∂

∂T
+

p
2m
· ∇R −∇RUeff(R, T ) · ∇p

]
× fq(p,R, T ) = 0, (18)

with Ueff(R, T ) = U(R, T ) +
∫

dR′v(R − R′)
×
∫

d3p′

(2π)3 fq(p′,R′, T ). Equation (18) preserves its usual
form for an arbitrary q as the Bogoliubov inequality [13].
Although the generalized collisionless Boltzmann equation
has the same formal aspect as the usual one [16], it leads
to different results. In fact, the systems of interest in both
cases are promoted by different features, i.e., the bound-
ary condition for fq(R,R′, T ) with q 6= 1 and q = 1
are different. In order to make the differences between
fq(R,R′, T ) and the usual one evident, we work equa-
tion (18) in the following section by considering q near
unity and the linearization of the Hartree approximation.

3 Application

Simple textbook examples, such as free particle, the har-
monic oscillator, the non-interacting scalar field, etc., do
not exhibit any kind of nonextensive behavior. It is not
necessary to introduce a generalized statistical mechanics

to deal with these systems. However, these simple exam-
ples are very useful in order to illustrate how the formal-
ism works. And they are even more instructive when they
provide exactly solvable cases. Thus, we start our appli-
cation by considering the small potential U(R, T ) and q
less than one, i.e., we solve equation (18) in the random
phase approximation with q less than one.

To solve equation (18) we must know the initial con-
dition. Let us suppose that, in the limit T → −∞, the
disturbances vanish; then, fq(p,R, T ) is given by the equi-
librium condition. In addition, employing the Hartree ap-
proximation we have that

lim
T→−∞

fq(p,R, T ) = fq(E(p)), (19)

with fq(E(p)) defined in [12] as:

fq(E(p)) =
∫
C

duK̃(2)
q (u)

Z̃1(−u(1− q)β̃, µ)
e−u(1−q)β̃(E(p)−µ) + 1

, (20)

where K̃(2)
q (u) is given by

K(2)
q (u) =

i
2πZq

Γ

(
2− q
1− q

)
exp(−u)(−u)−1/(1−q) , (21)

with β̃ = β/Trρq, E(p) = p2/(2m) + 〈n̂〉q
∫

drv(r) and Z̃1

being the corresponding conventional partition function
multiplied by e−uβ̃(1−q)(Ũq−µÑq).

The first order in U(R, T ) leads to

fq(p,R, T ) = fq(E(p)) + δfq(p,R, T ) , (22)

where δfq(p,R, T ) =
∫ T
−∞

∫
dT ′dR′ δδU fq(p,R −R′, T −

T ′)U(R′, T ′). This equation defines the linear response in
the real time domain. Due to the smallness of U(R, T ),
substituting equation (22) into equation (18) and taking
into consideration the case in which U(R, T ) has the form
of U(R, T ) = U(k, ω)eik·R−iωT , we calculate two physi-
cally interesting quantities. In the random phase approx-
imation, the first quantity is the change of density,

δ〈n̂(k, ω)〉q =
∫

d3p

(2π)3
δfq(p,k, ω)

=
U(k, ω)

1− v(k) δ
δU 〈n̂(k, ω)〉q

δ

δU
〈n̂(k, ω)〉q, (23)

with

δ

δU
〈n̂(k, ω)〉q =∫

d3p

(2π)3

fq(E(p− k/2))− fq(E(p + k/2))
ω − k · p/m · (24)

Another function of direct interest is the dynamic di-
electric response function, Kq, which is given by

Kq(k, ω) =
[
1− v(k)

δ

δU
〈n̂(k, ω)〉q

]−1

. (25)
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Now, let us analyze systems of charged particles
employing the random phase approximation developed
above. Interaction is through the Coulomb potential,
v(R) = e2/R. After some calculations and considering the
limit in which the disturbance varies so slowly in space
that (k · p)2 � ω2, we obtain

δ

δU
〈n̂(k, ω)〉q =

∫
d3 p

(2π)3

×
[
fq

(
(p− k/2)2

2m

)
− fq

(
(p + k/2)2

2m

)]
×
[

k · p
mω2

+
1
ω5

(
k · p
m

)3
]
. (26)

Shifting the origin of p integration in equation (26) and
keeping only the terms up to order k4, we have

δ

δU
〈n̂(k, ω)〉q =

〈n̂〉q
mω2

[
1 +

k2

ω2
〈v2〉q

]
, (27)

where

〈n̂〉q =
∫

d3 p

(2π)3

∫
C

duK̃(2)
q (u)

Z̃1(−u(1− q)β̃, µ)
e−u(1−q)β̃(E(p)−µ) + 1

(28)

and

〈v2〉q =
1
〈n̂〉q

∫
d3 p

(2π)3

×
∫
C

du
p2

m2
K̃(2)
q (u)

Z̃1(−u(1− q)β̃, µ)
e−u(1−q)β̃(E(p)−µ) + 1

· (29)

For k · p � ω2, the dielectric function (25) can be
found by substituting equation (27), so we obtain

Kq(k, ω) = ω2

[
ω2 − 4πe2

k2
〈n̂〉q

(
1 +

k2

ω2
〈v2〉q

)]−1

,

(30)

with 〈n̂〉q and 〈v2〉q defined in equations (28) and (29).
We note that there are poles in the approximated response
function (30) at ω2 = 4πe2〈n̂〉q/m+k2〈v2〉q. These poles,
which depend on q, can indicate possible excitation, or
resonant response from the system. In Figure 1, we show
the behavior obtained from ω2 for typical q values in order
to illustrate the results obtained within the generalized
case (q 6= 1). Resonance response also occurs due to the
change of density δ〈n̂(k, ω)〉q . Therefore, it corresponds to
a possible density oscillation of the system. This resonance
is a generalization of plasma oscillation in the context of
Tsallis statistics.
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Fig. 1. In this figure we plot (1/(4πe2〈n̂〉q))ω2 versus
(1/(4πe2))k by considering for simplicity 1/β̃ = 1272.5, m = 1,
V = 1 and 〈n̂〉q = 0.0004.

In the classical limit for q < 1, the expressions (28)
and (29) turns out to be

〈v2〉q =
1
Zq

3
m〈n̂〉qβ̃

(
m

2π(1− q)β̃

)3/2

× Γ
(

2− q
1− q

) ∞∑
n=0

1
n!

[
V

(
m

2π(1− q)β̃

)3/2
]n

×

[
1+(1− q)β̃

(
〈Ĥ−µN̂〉q+µ(n+1)

)]1/(1−q)+3/2(n+1)

Γ
(

2−q
1−q + 3

2 (n+ 1)
) ,

(31)

and

〈n̂〉q =
〈N̂〉q
V

=
1
Zq

(
m

2π(1− q)β̃

)3/2

× Γ
(

1
1− q

) ∞∑
n=0

1
n!

[
V

(
m

2π(1− q)β̃

)3/2
]n

×

[
1+(1−q)β̃

(
〈Ĥ−µN̂〉q+µ(n+1)

)]q/(1−q)+3/2(n+1)

Γ
(

1
1−q + 3

2 (n+ 1)
) ,

(32)
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with

Zq = Γ

(
2− q
1− q

) ∞∑
n=0

1
n!

[
V

(
m

2π(1− q)β̃

)3/2
]n

×

[
1 + (1− q)β̃

(
〈Ĥ − µN̂〉q + µn

)]1/(1−q)+3/2n

Γ
(

1
1−q + 3

2n
) , (33)

where 〈v2〉q = (2/m)(〈Ĥ〉q/〈N〉q). In addition, in the
limit of low temperature we may approximate the expres-
sions for 〈v2〉q and 〈n̂〉q by

〈v2〉q ≈
1
〈n̂〉q

[
3

5m
〈n̂〉1εF +

2
m

(µ− εF)εFg(εF)

+
π2

2m
g(µ)

(1− q)β̃2

[
π2〈n̂〉1

(1− q)β̃εF

(
µ

εF

)1/2
]−1/2

×
I 2−q

1−q

([
π2〈n̂〉1

(1−q)β̃εF

(
µ
εF

)1/2
]1/2

)

I 1
1−q

([
π2〈n̂〉1

(1−q)β̃εF

(
µ
εF

)1/2
]1/2

)] (34)

and

〈n̂〉q ≈ 〈n̂〉1 + (µ− εF)g(εF)

+
π2

6
1

(1− q)β̃2
g′(µ)

[
π2〈n̂〉1

(1− q)β̃εF

(
µ

εF

)1/2
]−1/2

×
I 2−q

1−q

([
π2〈n̂〉1

(1−q)β̃εF

(
µ
εF

)1/2
]1/2

)

I 1
1−q

([
π2〈n̂〉1

(1−q)β̃εF

(
µ
εF

)1/2
]1/2

) , (35)

where εF is the Fermi energy, 〈n̂〉1 = 2/3g(εF)εF, g(ε) =
1/(4π2)(2m)3/2ε1/2 is the density of states, and Iα(x) is
the modified Bessel function of first kind.

Before concluding this section, we call attention for
the equation (23), which, in the usual many-body theory
(q = 1), can be obtained by using the linear response
theory. In fact, for q = 1 the approach developed here
and the one based on the linear response theory are found
to be equivalent [16]. In contrast, a possible proof of the
equivalence between these approaches (the linear response
theory for q 6= 1 is developed in [10]) seems to be lost be-
cause the boundary condition based on the cyclic property
of the trace can not be established for q 6= 1, for exam-
ple 〈Ψ(r, t)Ψ†(r, t)〉q 6= 〈Ψ†(r, t − iβ)Ψ(r, t)〉q for q 6= 1.
We emphasize that this equivalence is also lost when we
employ the random phase approximation. Thus, obtain-
ing equation (23) becomes a hard task (if not impossible)
when we employ the linear response theory [10].

4 Summary and conclusions

We have developed the collisionless Boltzmann transport-
like equation for nonextensive systems based on Tsallis
statistics employing the Green function techniques [11,12]
for arbitrary q, and by using the Hartree approximation.
We have also applied the present formalism to a fermionic
system in order to obtain the dielectric response function
and the plasma oscillation accomplishing Tsallis statistics.
In addition, we have found the expressions for the average
number and for the internal energy in the limit of high
temperature and low temperature employing the normal-
ized version of the Tsallis statistics for q less than one.
In fact, from a formal point of view, noninteracting and
short-range interacting systems are mathematically well
posed problems only for q < 1 when the degree of freedom
are very large. These physical quantities, the dielectric re-
sponse function and the plasma oscillation, can be used
to verify a possible relation between the Tsallis statistics
and the anomalous systems (for example, systems with
fractal structure [18]). In addition, the present develop-
ment can also be used to give a firm basis for the analysis
performed in [7,22]. We may add that other forms of den-
sity matrix (probability distribution), such as presented in
[23–25], in the above formalism by considering an appro-
priate definition of the β parameter. Furthermore, similar
to the usual collisionless Boltzmann transport equation,
which has been traditionally employed in many physical
contexts, we expect that the present work will be of help
in the proper analysis of anomalous systems related to
nonextensive phenomena.

We thank the financial support from CNPq and PRONEX
(Brazilian agencies).
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